If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+44x+15=0
a = 4; b = 44; c = +15;
Δ = b2-4ac
Δ = 442-4·4·15
Δ = 1696
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1696}=\sqrt{16*106}=\sqrt{16}*\sqrt{106}=4\sqrt{106}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(44)-4\sqrt{106}}{2*4}=\frac{-44-4\sqrt{106}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(44)+4\sqrt{106}}{2*4}=\frac{-44+4\sqrt{106}}{8} $
| 19z+-16z=-12 | | 16-25=-x^2 | | 4^2-5^2=x^2 | | (5/6x)+3=10.5 | | 4(a-1)=5(a+3) | | x-15=67x-15+ | | v−-2=13 | | z*1.3=9.1 | | z·1.3=9.1 | | z/3-12=78 | | g−6.3=2.6 | | 75x+2x=180° | | 3(4x-6)=-117 | | 4.9+b=6.9 | | q·4=0.8 | | g−-9=16 | | 2.5x=x+2 | | G(x)=78-7x | | 25z+12=-13 | | 196=16x/2 | | 32/48=x/12 | | 5-x/15-9/5=-x-1-x/3 | | 55+y=67 | | a^2-10=-3a | | X-7/3x+1=x+3/x | | 2(x-7)+7x=16+4x | | v=1/3*3.14*(4)2*(19) | | F(5)=2x+11 | | 57/y=3/1 | | -5-16y=22 | | X=5,3x=30 | | -58=g+-97 |